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Figure 1. Structure of dragmacid
We report a synthesis of a left-hand fragment of bis(indole)-class marine alkaloid, dragmacidin D. The
synthesis features Suzuki–Miyaura reaction for the coupling of imidazolyl boronic acid and (4-indol-
yl)vinyl bromide.

� 2008 Elsevier Ltd. All rights reserved.
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Scheme 1. Synthetic plan for dragmacidin D (1) amenable to analogue synthesis.
Dragmacidin D (1) is a bis(indole) alkaloid, isolated first from a
deep-water marine sponge of the genus Spongosorites by Wright
et al. in 1992.1 With other dragmacidins,2,3 1 receives considerable
attention because of the diverse biological spectrum of activities
such as potent inhibition of serine-threonine protein phosphatases
(PP1)3 and brain nitric oxide synthase (bNOS)4 (Fig. 1).

Structurally, dragmacidin D (1) contains two indoles with pyr-
azinone spacer between them. Among dragmacidin family, the
characteristic features of 1 are the presence of guanidine function-
ality and a stereogenic center at a benzylic position.

As for the chemical synthesis of 1, Jiang and co-workers have
reported some synthetic studies,5,6 and Stoltz’s group has accom-
plished the first total synthesis in 2002.7 Prompted by the
intriguing biological activities, we also started our own program
directed toward the total synthesis of 1, aiming for the develop-
ment of a route amenable to the analogue preparation.

Our synthetic strategy is shown in Scheme 1. Three advanced
intermediates 2–4 have retrosynthetically emerged as key frag-
ments, which would be assembled sequentially. It should be
emphasized here that the intermediates 2–4 may have structural
ll rights reserved.
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variants as branching points for diverted synthesis of analogues.8

Coupling reaction of the intermediates 2 and 3 is of significance,
since Suzuki–Miyaura reaction9 between imidazolyl boronic acid
and vinyl bromide (arrow a) was planned to be used for this pur-
pose.10 As shown by arrows b and c, it was envisioned that the cen-
tral pyrazinone ring would be constructed by successive reactions
between indole side chains.11 In this Letter, we report syntheses
and coupling of fragments 2 and 3 toward the suitably protected
left-hand fragment 17.

Synthesis of imidazolyl boronic acid fragment 2 is shown in
Scheme 2. Here, imidazole derivative 5, prepared from imidazole
in two steps (MOM protection and SPh group introduction),12

was used as a starting material. Deprotonation of 5 followed by
the addition of trimethyl borate gave the boronic acid 2 after acidic
work-up. The reaction was highly regioselective,13 giving rise to
the desired 2 as a sole product in 50% yield.
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Scheme 2. Synthesis of the imidazolyl boronic acid fragment 2. Reagents and
conditions: (a) n-BuLi, B(OMe)3, THF, �78 �C rt, 1.5 h, then hydrochloric acid (1 M),
50%; MOM = methoxymethyl.

Table 1
Suzuki–Miyaura cross-coupling reaction of imidazolyl boronic acid 2 with vinyl
halides

N N

SPh
MOM

B(OH)2
2 (3 equiv)

Ar

X

vinyl halide
(1 equiv)

Pd(PPh3)4 (10 mol%)
Cs2CO3 (300 mol%) Ar

NN

SPh
MOM

Run Vinyl halide Additive
and
reaction

Product
(isolated yield)
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4-Bromo-7-methoxy-1H-indole (7), used for the synthesis of
indole fragment 3, was prepared in 73% by Batcho–Leimgruber in-
dole synthesis14 with slight modification of a reported procedure6

using zinc metal in AcOH, in place of Raney-Ni and hydrazine
(Scheme 3). The amino ester side chain was introduced to 7 by
three-component, Mannich-type Friedel–Crafts reaction in the
presence of MgSO4 to provide 8 in 76% yield.15 Protecting group
manipulation was then carried out on 8 (N-tosylation, MP-depro-
tection, and N-Boc formation) to give 9 in 22% overall yield. For
the preparation of vinyl halide 3, acetylene group was initially
introduced to 9 employing Sonogashira cross-coupling reaction.16

Thus, when 9 was reacted with TIPS-acetylene in the presence of
Pd(PPh3)4 (10 mol %), CuI (5 mol %), and triethylamine at 100 �C,
10 was cleanly obtained in 47% yield. Unreacted 9 was recovered
in 50% yield and reused. TIPS group of 10 was removed by Bu4NF
(88% yield), and treatment with HBr�AcOH gave the desired indole
fragment 3 in 100% yield, ready for coupling with the imidazolyl
fragment 2.

Suzuki–Miyaura cross-coupling reaction9 of imidazolyl boronic
acid 2 with three vinyl halides, including 3, was next examined
(Table 1). Here, 3 equiv of boronic acid 2 was used. As shown in
run 1, 1-(1-iodovinyl)benzene (11)17 was employed first under
standard conditions (Pd(PPh3)4, aqueous Cs2CO3, THF, rt), and the
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Scheme 3. Synthesis of the (4-indolyl)vinyl bromide fragment 3. Reagents and
conditions: (a) HC(OMe)2–NMe2, pyrrolidine, DMF, 110 �C, 4.5 h; (b) Zn, AcOH,
85 �C, 1.5 h, 73% (two steps); (c) 4-methoxyaniline, ethyl glyoxalate, MgSO4, CH2Cl2,
rt, 10 h, 76%; (d) TsCl, triethylamine, 4-dimethylaminopyridine, THF, 65 �C, 24 h,
60%; (e) Ce(NH4)2(NO3)6, CH3CN, �15 �C, 15 min, 62%; (f) Boc2O, CH2Cl2, rt, 2 h, 60%;
(g) (triisopropylsilyl)acetylene, Pd(PPh3)4 10 mol %), CuI (5 mol %), 1,4-dioxane/
triethylamine (1:1), 100 �C, 10 h, 47% (50% recovery); (h) Bu4NF, THF, H2O, 0 �C,
30 min, 88%; (i) HBr�AcOH, THF, 0 �C, 0.5 h, 100%; Boc = tert-butoxycarbonyl,
MP = 4-methoxyphenyl, TIPS = triisopropylsilyl, Ts = 4-tolylsulfonyl.
coupling product 12 was found to be obtained only in unsatisfac-
tory yield (30%). The reaction with (4-indolyl)vinyl bromide 13,
which is analogous to 3 but had been prepared independently,18

was found to be sluggish at rt. However, at elevated temperature,
cross-coupling product 14 was obtained in 59% yield after deacet-
ylation (run 2). Since hydrolytic protodeboronation of 2 was ob-
served as an undesired side reaction in runs 1 and 2, addition of
water was supposed to be inconvenient for this coupling. We,
therefore, determined to use non-aqueous conditions for the cou-
pling reaction between 2 and 3 in run 3. Thus, when NaOEt
(150 mol %)19 was used in combination with Pd(PPh3)4 (10 mol %)
and Cs2CO3 (300 mol %) in 1,4-dioxane at 100 �C, we gratifyingly
found that the desired product 15 was obtained in >90% yield from
1H NMR analysis,20 and was cleanly isolated in 74% yield after
reduction of the ethyl ester (compound 16, see Scheme 4). As ex-
pected, no protodeboronation was observed in this reaction.10
conditions
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a Yield determined after removal of two acetyl groups (K2CO3, MeOH, rt).
b After reduction of ethyl ester, the cross-coupling product was cleanly isolated in

74% yield (two steps), see text, Ref. 20, and Scheme 4.
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Scheme 4. Synthesis of the left-hand fragment of dragmacidin D (1). Reagents and
conditions: (a) LiBH4, THF, 40 �C, 1 h, 74% (two steps from 3); (b) TsCl, triethyl-
amine, 4-dimethylaminopyridine, CH2Cl2, rt, 1 h, 92%.
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Finally, the coupling product 15, thus obtained successfully, was
converted into the left-hand domain of dragmacidin D (1). Thus,
the ester 15 was reduced with LiBH4, giving rise to alcohol 16 in
74% yield for two steps (from 3), which in turn was tosylated to
provide the desired left-hand fragment 17 in 92% yield, ready for
coupling with the second indole fragment 4.

In summary, we have established the route to two fragments 2
and 3 as advanced intermediates for the diverted synthesis of
dragmacidin D (1) and analogues. Furthermore, Suzuki–Miyaura
reaction for the coupling of these fragments has been successfully
demonstrated, leading to the suitably protected left-hand fragment
of 1. Coupling of 17 with the second indole fragment 4 toward the
total synthesis is currently underway in our laboratory and will be
reported in due course.
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